Deep ocean heat uptake as a major source of spread in transient climate change simulations
نویسندگان
چکیده
[1] Two main mechanisms can potentially explain the spread in the magnitude of global warming simulated by climate models: deep ocean heat uptake and climate feedbacks. Here, we show that deep oceanic heat uptake is a major source of spread in simulations of 21st century climate change. Models with deeper baseline polar mixed layers are associated with larger deep ocean warming and smaller global surface warming. Based on this result, we set forth an observational constraint on polar vertical oceanic mixing. This constraint suggests that many models may overestimate the efficiency of polar oceanic mixing and therefore may underestimate future surface warming. Thus to reduce climate change uncertainties at time-scales relevant for policy-making, improved understanding and modelling of oceanic mixing at high latitudes is crucial. Citation: Boé, J., A. Hall, and X. Qu (2009), Deep ocean heat uptake as a major source of spread in transient climate change simulations, Geophys. Res. Lett., 36, L22701, doi:10.1029/ 2009GL040845.
منابع مشابه
Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change
[1] Under increasing greenhouse gas concentrations, ocean heat uptake moderates the rate of climate change, and thermal expansion makes a substantial contribution to sea level rise. In this paper we quantify the differences in projections among atmosphere-ocean general circulation models of the Coupled Model Intercomparison Project in terms of transient climate response, ocean heat uptake effic...
متن کاملComparing Oceanic Heat Uptake in AOGCM Transient Climate Change Experiments
The transient response of both surface air temperature and deep ocean temperature to an increasing external forcing strongly depends on climate sensitivity and the rate of the heat mixing into the deep ocean, estimates for both of which have large uncertainty. In this paper a method for estimating rates of oceanic heat uptake for coupled atmosphere–ocean general circulation models from results ...
متن کاملThe inconstancy of the transient climate response parameter under increasing CO2
In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO(2) increasing at 1% yr(-1)) during the second doubling of CO(2) is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, t...
متن کاملImpact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change
We propose here that the Atlantic meridional overturning circulation (AMOC) plays an important role in setting the effective heat capacity of the World Ocean and thus impacts the pace of transient climate change. The depth and strength of AMOC are shown to be strongly correlated with the depth of heat storage across a suite of state-of-the-art general circulation models (GCMs). In those models ...
متن کاملOcean Chlorofluorocarbon and Heat Uptake During the 20 th Century in the CCSM
An ensemble of nine simulations for the climate of the 20th Century has been run using the Community Climate System Model version 3 (CCSM3). Three of these runs also simulate the uptake of chlorofluorocarbon-11 (CFC-11) into the ocean using the protocol from the Ocean Carbon Model Intercomparison Project. Comparison with ocean observations taken between 1980 and 2000 shows that the global CFC-1...
متن کامل